On an asymptotically linear elliptic Dirichlet problem
نویسندگان
چکیده
منابع مشابه
On an Asymptotically Linear Elliptic Dirichlet Problem
where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. The conditions imposed on f (x, t) are as follows: (f1) f ∈ C(Ω×R,R); f (x,0) = 0, for all x ∈Ω. (f2) lim|t|→0( f (x, t)/t) = μ, lim|t|→∞( f (x, t)/t) = uniformly in x ∈Ω. Since we assume (f2), problem (1.1) is called asymptotically linear at both zero and infinity. This kind of problems have captured great interest since the pi...
متن کاملBifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملbifurcation problem for biharmonic asymptotically linear elliptic equations
in this paper, we investigate the existence of positive solutions for the ellipticequation $delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $omega$ of $r^{n}$, $ngeq2$, with navier boundary conditions. we show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملThe Dirichlet Problem for Nonuniformly Elliptic Equations
and repeated indices indicate summation from 1 to n. The functions a'(x, u, p), a(x, u, p) are defined in QX£ n + 1 . If furthermore for any ikf>0, the ratio of the maximum to minimum eigenvalues of [a(Xy u, p)] is bounded in ÛX( — M, M)XE, Qu is called uniformly elliptic. A solution of the Dirichlet problem Qu = Q, u—<f)(x) on <50 is a C(n)P\C(O) function u(x) satisfying Qu = 0 in £2 and agree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2002
ISSN: 1085-3375,1687-0409
DOI: 10.1155/s1085337502207046